博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
《高等数学、偏导数》
阅读量:5289 次
发布时间:2019-06-14

本文共 585 字,大约阅读时间需要 1 分钟。

 

偏导数

1.概念:

    导数定义: 导数代表了在自变量变化趋于无穷小的时候,函数值的变化与自变量的变化的比值。几何意义是这个点的切线。物理意义是该时刻的(瞬时)变化率

    注意:在一元函数中,只有一个自变量变动,也就是说只存在一个方向的变化率,这也就是为什么一元函数没有偏导数的原因。 

    (derivative)

 

    在中,一个多变量的函数的偏导数是它关于其中一个变量的,而保持其他变量恒定(相对于,在其中所有变量都允许变化)。

    偏导数在和,以及中是很有用的。  --引用自维基百科

      

              

    既然谈到偏导数,那就至少涉及到两个自变量。以两个自变量为例,z=f(x,y),从导数到偏导数,也就是从曲线来到了曲面。曲线上的一点,其切线只有一条。但是曲面上的一点,切线有无                  数条。而偏导数就是指多元函数沿着坐标轴的变化率。

               注意:直观地说,偏导数也就是函数在某一点上沿坐标轴正方向的的变化率。
             (partial derivative)

    数学表示:函数关于变量x的偏导数写为。偏导数符号是圆体字母,区别于全导数符号的正体

    由定义可求得:

                                 

                                  

    

     偏导数对称性

      

     

 

        

 

转载于:https://www.cnblogs.com/kangxinxin/p/9927716.html

你可能感兴趣的文章
面向对象与网络编程的总结
查看>>
第十五章、线程之协程
查看>>
第十五章、python中的进程操作-开启多进程
查看>>
抢票小程序
查看>>
第十六章、初识数据库
查看>>
第十五章、并发编程之线程
查看>>
第十六章、浅识数据库
查看>>
第十五章、并发编程之守护线程
查看>>
第十六章、数据库之多表关系
查看>>
第十五章、线程之queue模块的各种队列
查看>>
Mysql总结
查看>>
第十五章、线程池和进程池
查看>>
第十六章、单表查询、多表查询
查看>>
<一> idea+gradle+springboot创建项目
查看>>
解决 "Could not autowire. No beans of 'SationMapper' type found" 的问题
查看>>
P3383 【模板】线性筛素数
查看>>
P1021 邮票面值设计
查看>>
#574. 桂林的文件
查看>>
#554. 正则表达式
查看>>
P3719 [AHOI2017初中组]rexp
查看>>