偏导数
1.概念:
导数定义: 导数代表了在自变量变化趋于无穷小的时候,函数值的变化与自变量的变化的比值。几何意义是这个点的切线。物理意义是该时刻的(瞬时)变化率
注意:在一元函数中,只有一个自变量变动,也就是说只存在一个方向的变化率,这也就是为什么一元函数没有偏导数的原因。
(derivative)
在中,一个多变量的函数的偏导数是它关于其中一个变量的,而保持其他变量恒定(相对于,在其中所有变量都允许变化)。
偏导数在和,以及中是很有用的。 --引用自维基百科
既然谈到偏导数,那就至少涉及到两个自变量。以两个自变量为例,z=f(x,y),从导数到偏导数,也就是从曲线来到了曲面。曲线上的一点,其切线只有一条。但是曲面上的一点,切线有无 数条。而偏导数就是指多元函数沿着坐标轴的变化率。
注意:直观地说,偏导数也就是函数在某一点上沿坐标轴正方向的的变化率。 (partial derivative)数学表示:函数关于变量x的偏导数写为或。偏导数符号是圆体字母,区别于全导数符号的正体。
由定义可求得:
偏导数对称性